skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Njoo, Lucille"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mental health stigma manifests differently for different genders, often being more associated with women and overlooked with men. Prior work in NLP has shown that gendered mental health stigmas are captured in large language models (LLMs). However, in the last year, LLMs have changed drastically: newer, generative models not only require different methods for measuring bias, but they also have become widely popular in society, interacting with millions of users and increasing the stakes of perpetuating gendered mental health stereotypes. In this paper, we examine gendered mental health stigma in GPT3.5-Turbo, the model that powers OpenAI’s popular ChatGPT. Building off of prior work, we conduct both quantitative and qualitative analyses to measure GPT3.5-Turbo’s bias between binary genders, as well as to explore its behavior around non-binary genders, in conversations about mental health. We find that, though GPT3.5-Turbo refrains from explicitly assuming gender, it still contains implicit gender biases when asked to complete sentences about mental health, consistently preferring female names over male names. Additionally, though GPT3.5-Turbo shows awareness of the nuances of non-binary people’s experiences, it often over-fixates on non-binary gender identities in free-response prompts. Our preliminary results demonstrate that while modern generative LLMs contain safeguards against blatant gender biases and have progressed in their inclusiveness of non-binary identities, they still implicitly encode gendered mental health stigma, and thus risk perpetuating harmful stereotypes in mental health contexts. 
    more » « less
  2. Recent advances in the capacity of large language models to generate human-like text have resulted in their increased adoption in user-facing settings. In parallel, these improvements have prompted a heated discourse around the risks of societal harms they introduce, whether inadvertent or malicious. Several studies have explored these harms and called for their mitigation via development of safer, fairer models. Going beyond enumerating the risks of harms, this work provides a survey of practical methods for addressing potential threats and societal harms from language generation models. We draw on several prior works’ taxonomies of language model risks to present a structured overview of strategies for detecting and ameliorating different kinds of risks/harms of language generators. Bridging diverse strands of research, this survey aims to serve as a practical guide for both LM researchers and practitioners, with explanations of different strategies’ motivations, their limitations, and open problems for future research. 
    more » « less
  3. Empowering language is important in many real-world contexts, from education to workplace dynamics to healthcare. Though language technologies are growing more prevalent in these contexts, empowerment has seldom been studied in NLP, and moreover, it is inherently challenging to operationalize because of its implicit nature. This work builds from linguistic and social psychology literature to explore what characterizes empowering language. We then crowdsource a novel dataset of Reddit posts labeled for empowerment, reasons why these posts are empowering to readers, and the social relationships between posters and readers. Our preliminary analyses show that this dataset, which we call TalkUp, can be used to train language models that capture empowering and disempowering language. More broadly, TalkUp provides an avenue to explore implication, presuppositions, and how social context influences the meaning of language. 
    more » « less
  4. Mental health stigma prevents many individuals from receiving the appropriate care, and social psychology studies have shown that mental health tends to be overlooked in men. In this work, we investigate gendered mental health stigma in masked language models. In doing so, we operationalize mental health stigma by developing a framework grounded in psychology research: we use clinical psychology literature to curate prompts, then evaluate the models’ propensity to generate gendered words. We find that masked language models capture societal stigma about gender in mental health: models are consistently more likely to predict female subjects than male in sentences about having a mental health condition (32% vs. 19%), and this disparity is exacerbated for sentences that indicate treatment-seeking behavior. Furthermore, we find that different models capture dimensions of stigma differently for men and women, associating stereotypes like anger, blame, and pity more with women with mental health conditions than with men. In showing the complex nuances of models’ gendered mental health stigma, we demonstrate that context and overlapping dimensions of identity are important considerations when assessing computational models’ social biases. 
    more » « less